

D4.1 Guidelines for the structure of the
overall development framework
Prepared by Gabriel Ruiz, Lesly Houndolé, Vincent Roch (CREM) and
Antoine Widmer, Daniel Hunacek (HES-SO Valais)

Reviewed by Sara Fritz, Lukas Kranzl (TU Wien)

2017-06-29

 2

Project Information

 Project name Hotmaps – Heating and Cooling Open Source
Tool for Mapping and Planning of Energy Systems

 Grant agreement
number

723677

 Project duration 2016-2020

 Project coordinator Lukas Kranzl
Technische Universität Wien (TU Wien), Institute
of Energy Systems and Electrical Drives, Energy
Economics Group (EEG)
Gusshausstrasse 25-29/370-3
A-1040 Wien / Vienna, Austria
Phone: +43 1 58801 370351
E-Mail: kranzl@eeg.tuwien.ac.at
info@hotmaps-project.eu

www.eeg.tuwien.ac.at
www.hotmaps-project.eu

 Lead author of this
report

Gabriel Ruiz
Centre de Recherches Energétiques et
Municipales (CREM)
+41 27 721 25 40
Gabriel.ruiz@crem.ch

Legal notice

The sole responsibility for the contents of this publication lies with the authors. It does not
necessarily reflect the opinion of the European Union. Neither the INEA nor the European
Commission is responsible for any use that may be made of the information contained
therein.

All rights reserved; no part of this publication may be translated, reproduced, stored in a
retrieval system, or transmitted in any form or by any means, electronic, mechanical,
photocopying, recording or otherwise, without the written permission of the publisher. Many
of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. The quotation of those designations in whatever way does not imply
the conclusion that the use of those designations is legal without the consent of the owner of
the trademark.

08
Fall

mailto:kranzl@eeg.tuwien.ac.at
mailto:info@hotmaps-project.eu
http://www.eeg.tuwien.ac.at/
http://www.eeg.tuwien.ac.at/
http://www.hotmaps-project.eu/
mailto:Gabriel.ruiz@crem.ch

 3

The Hotmaps project

The EU-funded project Hotmaps aims at designing a toolbox to support public authorities,
energy agencies and urban planners in strategic heating and cooling planning on local,
regional and national levels, and in line with EU policies.

In addition to guidelines and handbooks on how to carry out strategic heating and cooling
(H&C) planning, Hotmaps will provide the first H&C planning software that is

 User-driven: developed in close collaboration with 7 European pilot areas.

 Open source: the developed tool and all related modules will run without requiring
any other commercial tool or software. Use of and access to Source Code is subject to
Open Source License.

 EU-28 compatible: the tool will be applicable for cities in all 28 EU Member States.

The consortium behind

 4

1 INTRODUCTION .. 6

2 WP4 MANAGEMENT ... 6

2.1 SCRUM-meetings ... 6

2.2 CREM – HES bilateral meeting .. 7

2.3 CREM – HES daily SCRUM-meeting ... 7

2.4 Working session with other partners .. 7

3 DEVELOPMENT APPROACH ... 8

3.1 Agile methodology .. 8

3.1.1 Introduction ... 8

3.1.2 SCRUM & sprint, taiga and development of features according to priorisation from
owner ... 8

3.2 Coding .. 8

3.2.1 Documentation ... 8

3.2.2 Git-flow ... 9

3.2.3 Testing .. 9

3.3 From user needs to features development .. 9

3.3.1 Features Templates ... 9

3.3.2 User interface storyboard (next steps) ... 10

4 INFRASTRUCTURE AND DEVELOPMENT FRAMEWORK 10

4.1 Servers ... 10

4.2 Docker .. 11

4.3 Github/GitLab ... 11

4.3.1 Data .. 11

4.3.2 Code ... 11

5 IT ARCHITECTURE AND TECHNOLOGIES ... 12

5.1 Architecture scheme ... 12

5.1.1 Online & local toolbox .. 12

5.1.2 Hybrid configuration ... 15

5.2 Chosen technologies and why ... 16

 5

5.2.1 Server side ... 16

5.2.2 Client side ... 17

6 HOSTING AND DATA MANAGEMENT ... 18

6.1 During project ... 18

6.1.1 Code ... 18

6.1.2 Default data (GitLab) .. 18

6.1.3 Pilot area data .. 18

6.1.4 Test server ... 18

6.2 After project .. 18

6.2.1 Code ... 18

6.2.2 Default data (GitLab) .. 18

6.2.3 Pilot area data .. 18

6.2.4 Production server ... 19

6.3 INSPIRE and OGC compliance .. 19

7 LICENCE ... 19

ANNEXES ... 21

GitFlow Guidelines

Templates Guidelines

Taiga Guidelines

 6

1 Introduction

Amongst the 7 work packages (WP's) of the Hotmaps project, WP 4 is dedicated to the
implementation of the open source tool with the objective to provide the user-friendly open
source toolbox Hotmaps. This requires the implementation of a system environment for the
open source tool from single energy system analysis modules and to define and implement a
user interface and GIS-based visualizations for the user interaction. Thus, based on the user
and the planning task, single or multiple modules have to be (sequentially) triggered.
Additional required data has to be loaded from the data store and the results need to be
visualized in an interactive, GIS-based map. Furthermore the testing of toolbox is initiated via
the definition of beta versions for testing and step 1 of the testing procedure, namely
automated testing.

The present report called "Guidelines for the structure of the overall development
framework" represents the first deliverable of the WP4 due by the end of project's Month 9.
This report provides a screening and definition of the IT related framework set-up and
choices that could be implemented after this first project reporting period. It covers topics
ranging from the management system in place and the retained development approach, up
to the proposed hosting solutions and tool licencing, going through the selected technologies
and tool architecture, as well as the chosen infrastructure and development frameworks. A
point is also made on the remaining elements to be still set-up.

2 WP4 management

2.1 SCRUM-meetings

The retained agile development approach follows the SCRUM method (see chapter 3). Its
application asks for a regular review of the development performed within a set timeframe
(the so called "sprint"). The timeframe chosen for the Hotmaps project is of 3 weeks.
Practically, a web conference is set up every third Thursday, from 10h30 to 12h.

As these meetings are happening on regular basis and involve the pilot areas (users’
representative) as well as the institutes involved in the toolbox development, it was decided
to extend the goal of the SCRUM meeting by starting with general project management
topics. The followed agenda is set as follows:

 Organizational part for the whole consortium (all, 5 min): led by TUW and dedicated
to discussing next steps, open questions and the progress of the project as a whole
(like topics to follow-up or coming deliverables).

 SCRUM meeting – part I (all, 15 min): led by TUW and where the updates of the IT-
development process are demonstrated for the Pilot areas. For the time being, it has
been initiated that each Pilot area has a dedicated SCRUM meeting to present a
specific energy concern of its territory. On a later stage, feedback from using the
toolbox prototype will be collected from the Pilot areas.

 SCRUM meeting – part II (IT-Development team and all who are interested to
participate, <60 min): led by HES-SO (SCRUM master) and dedicated to IT specific

 7

progress and issues. Attendance of Pilot areas is welcome, although not required.
During this part of the meeting, every institute involved in IT activities gives a
feedback on its progress or encountered issues. CREM is in charge of the sprint
review - a review of the achieved and coming programming activities. This sprint
review is performed using Taiga software (the retained project management system
for Agile development). The other IT activities are also discussed, like the features
specifications, infrastructure set up, demonstration of the progress made on the user
interface, etc.

In short, these SCRUM meetings are actually the regular follow-up meeting of the project.
Furthermore, they give the pilot areas the opportunity to provide continuous feedback on the
ongoing developments, on the features definition and on the application modules later in the
project (part of the Agile approach).

2.2 CREM – HES bilateral meeting

In between the SCRUM meetings, the WP4 core team, i.e. CREM and HES-SO, meets on a
regular basis to ensure a proper coordination of the software development activities:

 Physical meeting 1 week after the SCRUM meeting from 9h to 11h. The goal is to
address management issues related to WP4, as well as to review and get aligned on
each component of the IT project specific (infrastructure, architecture, data base
structure, interface, testing etc.).

 Alignment meeting (by phone or web conference) the day before SCRUM meeting at
16h. The purpose it to coordinate the input to Part II of the SCRUM meeting.

2.3 CREM – HES daily SCRUM-meeting

As required by the Agile approach, the IT developers are holding a short alignment
meeting 10 min at 10 am every day. Done by phone or web conference, the purpose is to
inform all on the planned work of the day, and to ask for support in case a blocking issue
is encountered.

This way of acting fosters the mutual support and facilitates the attribution of the works
to be carried out. Indeed, supported by the Taiga project management system, each day
developers can reallocate the programming tasks in coherence with each other's
availability and competencies.

2.4 Working session with other partners

On top of the regularly scheduled meeting presented above, specific working sessions
are hold on demand. These can happen to further discuss an issue raised by a partner
during the SCRUM meeting or to get aligned with the project leader TUW.

In this respect, several working sessions (through web conference) are carried out with
TUW regarding the toolbox features definition, the consistency of input/output and the
comparison of indicators, the user storyboard (mock-up of the toolbox), and overall link
between WP4 and other WP's.

 8

3 Development approach

3.1 Agile methodology

3.1.1 Introduction

The IT developments are driven by the Agile approach which consists in “breaking product
development work into small increments that minimize the amount of up-front planning and
design. Iterations are short time frames (time boxes) that typically last from one to four
weeks. Each iteration involves a cross-functional team working in all functions: planning,
analysis, design, coding, unit testing, and acceptance testing. At the end of the iteration a
working product is demonstrated to stakeholders. This minimizes overall risk and allows the
product to adapt to changes quickly. An iteration might not add enough functionality to
warrant a market release, but the goal is to have an available release (with minimal bugs) at
the end of each iteration. Multiple iterations might be required to release a product or new
features” (source: https://en.wikipedia.org/wiki/Agile_software_development, June 2017).

The key principles of the adopted Agile development method can be summarized as follows:

 Release often, resulting from incremental and iterative development works (ref. to the
above mentioned "time boxes").

 Get real user feedback, meaning involving the users from an earlier stage and throughout
the whole tool development.

 Focus on value rather than output, which allow to reset priorities according to the
received users' feedback (and validated by the product owner (TUW)).

 Experiment a lot with product, so it reflects users wishes and requirements

3.1.2 SCRUM & sprint, taiga and development of features

according to priorisation from owner

To integrate the Agile methodology within the project, we defined sprint of 3 weeks
punctuated by a SCRUM meeting (see Chapter 2). The goal of the SCRUM meeting is to
update each partner on what was done during the last sprint, to test freshly done features to
verify they are in line with users’ requirements, to discuss current technical or organisational
problems and at last make sure each partner knows where to focus for the next 3 weeks.

Tasks for next sprints are prioritized based on the product owner. Everyone can see at
anytime what is currently on focus in Taiga, (https://taiga.io) a visual tool for management of
SCRUM based projects.

3.2 Coding

3.2.1 Documentation

The Hotmaps code related to the toolbox and the webservices will be documented.
Documentation allows for a better understanding of the code, and how the available features

https://en.wikipedia.org/wiki/Agile_software_development

 9

have been implemented. Code documentation is also key when seeking for an open source
tool to be supported by a wide development community.

As coding activities also involves other WP's and project partners, and also thinking for the
future development contributions, CREM will publish a Documentation guideline during the
project to align any contributors to related best practices.

3.2.2 Git-flow

In the development process, "Git-flow" was implemented to manage different version of the
source code. Git-flow is a workflow for development with the Git version control system. It
manages how the Hotmaps repository, commits and branches are structured. Essentially, Git-
flow is a set of procedures that every team member has to follow in order to come to a
managed software development process. A dedicated tutorial was released by CREM and is
available in Annex 0.

3.2.3 Testing

Unit testing was defined in this project as a "must-have". Unit testing represents a software
development process in which features that are parts of an application, called units, are
individually and independently tested for proper operation. Unit testing can be done
manually but is often automated by using continuous integration (CI).

The great benefit to unit testing is that the earlier a problem is identified, the fewer
compound errors occur. A compound error is one that doesn't seem to break anything at
first, but eventually conflicts with something down the line and results in a problem. CI is
therefore implemented in order to achieve automated testing.

There are two programming language used to develop the Hotmaps toolbox: python and
javascript. For testing purposes, python developers can use unittest - a python framework for
unit testing. Javacript developers can use karma - a javascript framework for unit testing. CI
will be done by using the software Jenkins.

3.3 From user needs to features development

3.3.1 Features Templates

In order to describe all the features of the Hotmaps toolbox in a standard and common way,
templates have been created.

These features come from the compiled end user needs generated in the deliverable "User
stories and priorisation", an output from WP6. This report reflects the specification and
needs collected from the Pilot areas and classified according to their development priorities.

Descriptions through these templates encompass, for each feature:

 Its inputs

 Its outputs

 The required data

 The required calculation modules

 10

This ensures the technical feasibility of the features in terms of project partner competences
and data availability.

Once completed, these features will serve as requirement specifications for the IT
developers.

For convenient sharing purposes with Hotmaps partners, these templates have been created
with the help of GoogleSheet documents and associated scripts.

A guidelines document has been created which describes all the templates, their usage and
access to them (see Annexe 8.2).

3.3.2 User interface storyboard (next steps)

As described in chapter 3.3.1, two parallel works have been carried to define all the features
that will be part of the Hotmaps toolbox:

1. Feature coming from the user needs (Deliverable of the task "Specification and
priorisation of the user needs" of WP6)

2. Their standard description through templates to ensure their technical feasibility

At this stage, if the development of the individually prioritized features could start, an overall
picture is however missing to ensure that each developed features will be properly integrated
into the toolbox. Next step is then to describe all the relations between these features in
order to ensure their compatibility and their coherent integration in the Hotmaps toolbox,
while ensuring an efficient user experience.

This exercise is related to prototyping the Hotmpas User Interface (UI) by creating a
wireframe (storyboard) that will be refined and completed iteratively over time. The Hotmaps
UI Storyboard creation will be done through the help of dedicated software like the Balsamiq
software, specifically dedicated to create mockups of the features.

These UI definition activities should also be managed following SCRUM and sprints, but
where their validation should always happen one sprint ahead of the related feature
programming activity.

4 Infrastructure and development

framework

4.1 Servers

During the development phase of the project, the server is hosted at HES-SO Valais-Wallis on
a virtual machine running Ubuntu 16.04 xenial x64. All the different services / servers needed
by the project will be hosted as virtual containers on Docker. The advantage of doing so is to
offer an easy to deploy application containing multiple servers in one place. The only
constraint is to have Docker installed and an infrastructure capable of running the different
services altogether. For now, the available system is set-up with 8 CPU and 8 GB of RAM with
100 GB disk space that can be increased if needed.

 11

At the end of the project, the whole infrastructure will be migrated to another server that will
be hosted by Energy Cities. The migration process will be facilitated as Docker can be run on
any system and the configuration of the different services doesn't need any modification.

4.2 Docker

Docker is virtualization software that offers an additional layer of abstraction. This gives the
ability to run multiple services or servers on different containers. Each container encapsulates
the service or server and prevents unwanted access from each other. To make the containers
communicate Docker allows to configure the network between each of them. This way the
database can be for instance separated from the web server without using two different
machines.

Docker version 17.04 for linux is currently in use.

Docker is currently running seven services:

 the web server of the toolbox "toolbox-client" developed by CREM & HES-SO

 the main web service "toolbox-backend" developed by HES-SO & CREM

 the database developed by HES-SO & CREM

 the computation module "building h-c" developed by TUW

 the computation module "building h-c default EU28" developed by e-think

 the computation module "waste heat application" developed by ISI

 the computation module "res-potential" developed by EURAC

4.3 Github/GitLab

4.3.1 Data

To host data files that are collected, GIT repositories are chosen as they offers a good amount
of storage size and an easy setup. To avoid taking responsibility to maintain the infrastructure
of Git, an online hosting on GitLab was chosen which offers 10 GB storage for free. This first
set up allows starting to use Git and thus provides data for the whole consortium
immediately. Then if the amount of storage size needed to be increased, GitLab can be
installed on our server and thus have unlimited storage. There will be one repository for each
partner. The structure of the different repositories will be defined at a later stage.

4.3.2 Code

GitHub was selected to host the code related to the project. GitHub offers free public
repositories for open source projects, up to 1 GB per repository. There is one repository for
each service, except the database:

 toolbox-client

 HotMaps-Toolbox (toolbox-backend)

 HotMaps-res-potential

 HotMaps-building_h-c

 HotMaps-building_h-c_default_EU28

 12

 HotMaps-Waste-heat-application

Each repository contains one directory containing the code, one containing the docker
startup scripts and one for the documentation.

GitHub is also used to host files used to build Docker images. However, the built images are
stored on Docker Hub. The advantage of Docker Hub is that it allows to automatically building
images on push to GitHub.

5 IT Architecture and technologies

5.1 Architecture scheme

The architecture of the toolbox is quite complex at first sight. There are multiple web services
working as computation modules, a main web service, a database, some data repositories
and a web application. To make this work altogether it was decided to use Docker (see
Chapter 4) as abstraction layer so that the solution can easily be downloaded and run on any
server.

In order to meet the needs of allowing the user to use his own data privately and to be
compliant with the Data Management Plan (thus data confidentiality issues), two approaches
are proposed in Hotmaps, the online & local toolbox, as well as the hybrid configuration of
the toolbox, described in the following sections.

5.1.1 Online & local toolbox

The first one aims at offering the toolbox as both an online (see Figure 1) and offline software
(see Figure 2). The online toolbox is the platform with public data, that will be hosted by
Energy Cities at the end of the project and that anyone can use to plan with public data. The
second one, the offline platform is made available to anyone who wants to plan with both
private and public data.

In order to allow the user to import sensitive data, the solution gives the opportunity to add a
private git repository in the data warehouse that will be made available in the toolbox. To use
the offline platform, anyone can download the project from GitHub and build the application.
The application can then be used locally and no private data is shared to the toolbox across
the web.

 13

This architecture schema is considered as must-have, as it represents an efficient
implementation way for ensuring a compliant sensitivity data treatment while minimizing the
risks related to complex developments. Furthermore, this architecture is the basis for the
second possible architecture, meaning, the toolbox can still be upgraded to correspond to the
other imagined architecture (if time allows).

Figure 1: Online mode architecture of the Hotmaps tool

 14

Figure 2: Local mode architecture of the Hotmaps tool

 15

5.1.2 Hybrid configuration

This second architecture is more complex as it allows the user to upload his data directly onto
the online toolbox. The user should then be able to decide which information he wants to
share and which he wants to keep private. This architecture is considered as nice-to-have as it
is more complicated to implement (see Fehler! Verweisquelle konnte nicht gefunden
werden.). As shown in the figure, the user can define his/her own data repository that will be
synchronized with the platform.

Figure 3: Hybrid mode architecture of the Hotmaps tool

 16

5.2 Chosen technologies and why

5.2.1 Server side

Database

PostgreSQL was selected as database technology because it is the most advanced open
source database on the market, and also because it supports spatial and geographic objects
with the extension PostGIS. These two technologies are well documented and widely used,
benefitting from a rich community around those topics.

API

The main web service and the calculation modules will follow RESTful API, mainly due to its
proven performance and simplicity. For comparison purposes, RESTful API is indeed lighter
than SOAP, less CPU expensive and really easier to setup.

The chosen data exchange format is JSON as it is known to be easy to read, light and native to
JavaScript (particularly useful as it was decided to use JavaScript framework Angular 2 for the
interface).

The different web services are developed in Python as this is a well-known coding language
for scientific computations and because lots of existing libraries are available in that same
field.

To build each of these services, it was decided to use the framework Flask and Flask-
RESTplus. Flask is well known to be lightweight and easy to setup for REST API. Flask-RESTplus
is an extension for Flask that offers even more minimal setup and that has the advantage of
being compatible with Swagger (that will be used as API framework). The main web service
also integrates the Python extension SQLAlchemy as Object Relational Mapper and
GeoAlchemy 2 to make SQLAlchemy support PostGIS objects.

Calculation modules

The calculation modules mentioned above are the core of the toolbox. They offer
computations of all kind regarding the energy data available on the platform. As each
calculation module is responsible for specific tasks, they are hosted on separate web services
to keep a modular use (see Chapter 4).

These services are made available across the backend of the toolbox. Thus, each module can
benefit from the others by calling functions. Furthermore, each module is made available to
the toolbox by the main web service that is acting as relay between the frontend and the
backend.

Calculation modules are all built using Python language. They use the same technologies as
the main web service and might integrate other technologies like GRASS depending on the
needs.

 17

5.2.2 Client side

AngularJS 2

AngularJS2 is used to develop the web interface. AngularJS (commonly referred to as
""Angular.js"" or ""AngularJS 2.X"") is a JavaScript-based open source front-end web
application framework mainly maintained by Google and by a community of individuals and
corporations to address many of the challenges encountered in developing single-page
applications.

The benefits of using AngularJS2 are:

 If an application is a heavy load, then Angular 2 keeps it fully UI responsive.

 It uses server side rendering for fast views on mobile.

 It works well with ECMAScript and other languages that compile to JavaScript.

 It uses dependency injection to maintain applications without writing too long code.

 AngularJS2 use the component based approach .

Leafleft

Leaflet is used for mapping action in the web interface. Leaflet is the leading open source
JavaScript library for mobile-friendly interactive maps. It has all the mapping features most
developers ever need.

Leaflet is designed with simplicity, performance. It works efficiently across all major desktop
and mobile platforms, can be extended with lots of plugins, has a beautiful, easy to use and
well-documented API and a simple, readable source code that is a joy to contribute to.

The benefits of using Leaflet are:

 Light weight

 Free

 Strong community

 Evolutive via plugins

d3.js

D3.js is used to display the graphics of Hotmaps-toolbox. D3.js is a JavaScript library for
producing dynamic, interactive data visualizations in web browsers. It makes use of the
widely implemented SVG, HTML5, and CSS standards.

The benefits of using d3.js are:

 Infinitely customizable

 Fully interactive

 18

6 Hosting and data management

6.1 During project

6.1.1 Code

All the source code produced during the development of Hotmaps will be accessible on the
open source platform GitHub. Each partner will place its code directly on GitHub as soon as
the partner can. GitHub is the only way partners can exchange and integrate code for the
final development of Hotmaps.

6.1.2 Default data (GitLab)

Default data used in Hotmaps are hosted on GitLab. Publicly available data are stored in a
public repository allowing any user of Hotmaps to access data.

6.1.3 Pilot area data

Private data from pilot areas are hosted on GitLab. However, private repository is only used
so only people having access to the repository can use data stored in such repository.

6.1.4 Test server

HES-SO provides access to a test server during the project duration. The server will host the
Hotmaps toolboxes, backend and frontend so all partners can test directly online features
made available by the IT development team. This test server will be disconnected at the end
of the project and will be replaced by a production server that will be maintained by Energy
Cities.

6.2 After project

6.2.1 Code

After the project is finished, the source code produced during the development of the project
will not be moved. It will stay on GitHub as it is the main git repository hosting open source
projects from all round the world. This will ensure that the outcome of the project can be
used as long as possible after its end and the community can modify the source code so it
stays up to date with more efficient hardware and algorithms.

6.2.2 Default data (GitLab)

Same as in subsection 6.1.2

6.2.3 Pilot area data

Same as in subsection 6.1.3

 19

6.2.4 Production server

As soon as the project is finished, the latest version of Hotmaps will accessible from a
production server maintained by Energy Cities.

6.3 INSPIRE and OGC compliance

CREM and HES-SO are committed to develop a data warehouse that is INSPIRE compliant and
that will support the Catalog Services for the web (CSW), a specification from the Open
Geospatial Consortium for exposing geospatial catalogues over the web. For these purposes,
the tool CKAN is used with extensions that ensure compliance with INSPIRE and CSW.

CKAN is a powerful data management system that makes data accessible – by providing tools
to streamline publishing, sharing, finding and using data. CKAN is aimed at data publishers
(national and regional governments, companies and organizations) wanting.

In order to make sure that the data warehouse is INSPIRE and CSW from the OGC, the
following CKAN extensions will be used: "inspire_harvester" and "inspire_theme", both
designed for working with INSPIRE metadata in CKAN and enabling:

 To display INSPIRE metadata in a user-friendly form at CKAN interface.

 To export INSPIRE metadata in extended GeoDCAT-AP 1.0 RDF format.

Furthermore, CKAN offers support for the Catalogue Service for the Web (CSW) standard.
This support consists of:

 Ability to harvest records from remote CSW servers (as well as individual documents
available online or Web Accessible Folders of them). CKAN supports the ISO-19139
encoding.

 Basic CSW interface (for the harvested records)

7 Licence

Chosing the right licence under which the toolbox will be available and distributed is of
importance, especially given that many possibilities exist amongst the open source ones.

Important before any choice to keep in mind the following:

 A defined license applies all the time.

 But the obligation (if any) to distribute the modified source code is linked to the
distribution of the software.

This said, the selection approach started by comparing the two main families of licences: the
BSD and GPL types, where:

 BSD types (e.g. MIT, Apache) allow anyone to modify and further distribute the
software without any obligation to disclose the source code (basically the
improvements).

 20

 GPL types force to distribute the modified source code as soon as the software is
distributed ß any evolution of the code which is made available through a web
application for instance is not considered as a distribution of the code, except for the
AGPLv3.

 BSD types are not submitted to the condition of releasing modifications under the
same license as the source code.

 This condition applies for GPL types.

In parallel, a discussion within the IT Team is required to identify the intentions with regard to
a use and distribution of the Hotmaps' code. Three objectives were identified:

 Keep being the reference partners for any further developments of Hotmaps and
avoid that another branch of the code becomes the “reference code”.

 That a community grows as much as possible around Hotmaps

 Leave the door open for commercial opportunities with Hotmaps

Concerning the first pursued objective, it appears that no license can ensures this, as long as
the code is not distributed. And having control over time on the reference code is a matter of
being a main contributor. It is however requested, if possible, to force any distributed code to
make reference to its source (the Hotmaps project).

Concerning the second objective, it was agreed that GPL types are rather considered as a
“contaminating license”, mostly by lack of knowledge, and may lead to refrain the community
to contribute to Hotmaps. Whereas, BSD licence types, more popular, may foster the creation
of an active community around Hotmaps.

Concerning the third objective, both GPL and BSD license types allow for commercial
activities. MIT type leaves the additional possibility to ask for royalties to anyone who
markets the application.

The following decisions were made based on the above arguments and more detailed
considerations of available licences (see annex 8.3):

 To adopt one of the known licences (not to create a specific licence)

 To go for a BSD type licence, and with a preference for Apache.

If Apache is the retained licencing solution, there is only one remaining point to be confirmed
which relates to the first objective: that the reference to the Hotmaps project is kept. This
point will be further investigated.

 21

Annexes

GitFlow Guidelines

Templates Guidelines

Taiga Guidelines

Funded by the Horizon 2020 programme of the European Union

T u e s d a y , 3 1 J a n u a r y 2 0 1 7

GIT-FLOW Guidelines

For IT developers

Elaborated by CREM :

- Lesly Houndole, lesly.houndole@crem.ch
- Vincent Roch, vincent.roch@crem.ch

With the support of HES-SO :

- Daniel Hunacek, daniel.hunacek@hevs.ch
- Antoine Widmer antoine.widmer@hevs.ch

mailto:lesly.houndole@crem.ch
mailto:vincent.roch@crem.ch
mailto:daniel.hunacek@hevs.ch
mailto:antoine.widmer@hevs.ch

2

Date: 31/01/2017

Table of Contents

Introduction .. 3

Glossary of terms... 4

Responsabilities .. 5

Access rights .. 5

Git-flow definition ... 6

How do we use Git-flow? ... 7

Branches ..7

Master and Develop branches ..7

Feature branches ...8

Hotfix branches ...9

Release branches .. 10

References ... 11

3

Introduction

This document has been written to outline and define the version control process we will be
using for HotMaps 2020 project. It is aimed at anyone who would like to get involved by
contributing to the source code. We will be using Git to version control the codebase.
Our aim is to keep a clean but informative history of commits, allowing us to revert mistakes
easily.

We will use “Bump version” in order to increment the version number to a new, unique
value. Bump is a software project's VERSION which adds the CHANGES, and tags with GIT.
You can download bump at:
https://gist.github.com/pete-otaqui/4188238

https://gist.github.com/pete-otaqui/4188238

4

Glossary of terms

This section describes the basic terms we use and assume knowledge of. Full documentation
of Git terms can be found at:
https://git-scm.com/doc

Term Description

Repository
A Git repository is essentially a collection of branches, all related to
the same code base.

Commit
A commit in Git can be thought of as a snapshot of the repository at
any given point.

Commit message
A commit message is the message that describes the changes made
in a commit, viewable with ‘git log’.

Branch

A branch in Git can be thought of as a sequence of commits which
can be separated from all other commits. A branch may be merged
or rebased onto another branch to insert its commit history to other
branches.

Master

The master branch is the parent branch of all other branches,
including develop branch. In our process, it will receive only two
types of commits: Hotfixes and Major updates. The master branch
will always contain stable code and will be what the public will
receive.

Develop

The develop branch is a branch take from the master branch. It is
where all feature branches will be derived from. The code contained
in develop should always be stable. This branch will be the source of
the latest codebase, including nightly builds for example. Develop
will receive all Hotfixes as well as master.

Feature
A feature branch is a branch used to develop a new functionality.
Very large feature additions may require multiple feature branches
to be created.

Hotfix
A hotfix branch is used for critical bug fixes. This type of branch is
taken directly from master and, once the work is completed, merged
directly to master and develop

Release A release branch support preparation of a new production release

Tag
A tag is the term used to define a textual label that can be
associated with a specific revision.

Pull requests

Pull requests let you tell others about changes you have pushed to a
repository on Git. Once a pull request is opened, you can discuss and
review the potential changes with collaborators and add follow-up
commits before the changes are merged into the repository.

https://git-scm.com/doc

5

Responsabilities

CREM, HES-SO and TUW will be responsible for reviewing the code. Everyone else will have
to use pull request in order to modify master, develop, and release branch.

All source code for HotMaps Project must take place in the Git repositories owned by TUW.

Access rights

There are two kinds of access rights:

 owner access

 collaborator access

The repository owner will have full access to the repository:

 Invite collaborators (https://help.github.com/articles/inviting-collaborators-to-a-
personal-repository)

 Change the visibility of the repository

 Merge a pull request on a protected branch, even if there are no approved reviews

 Delete the repository (https://help.github.com/articles/deleting-a-repository)

Collaborator access has limited access to the repository:

 Push to (write), pull from (read), and fork (copy) the repository

 Apply labels and milestones

 Open, close, re-open, and assign issues

 Edit and delete comments on commits, pull requests, and issues

 Merge and close pull requests

 Send pull requests from forks of the repository

 Create and edit Wikis

 Create and edit Releases

 Remove themselves as collaborators on the repository

 Submit a review on a pull request that will affect its “mergeability”

For HotMaps projects, the following collaborators will have the owner access:

 Daniel Hunacek, HES-SO, daniel.Hunacek@hevs.ch

 Mostafa Fallahnejad, TUW, fallahnejad@eeg.tuwien.ac.at

 Lesly Houndole, CREM, Lesly.houndole@crem.ch

 Sara Fritz TU Wien, fritz@eeg.tuwien.ac.at

https://help.github.com/articles/inviting-collaborators-to-a-personal-repository
https://help.github.com/articles/inviting-collaborators-to-a-personal-repository
https://help.github.com/articles/deleting-a-repository
mailto:daniel.Hunacek@hevs.ch
mailto:fallahnejad@eeg.tuwien.ac.at
mailto:Lesly.houndole@crem.ch

6

Git-flow definition

Git-flow is a workflow for development with the Git version control system. It is how we
structure our repository, our commits and branches. Git-flow is essentially no more than a
set of procedures that every team member has to follow in order to come to a managed
software development process. The diagram below (see URL below) shows an overview of
this process:

For the most part, this document is based on Vincent Driessen's article “A successful Git
branching model” at http://nvie.com/posts/a-successful-git-branching-model/.

The develop branch will always aim to be stable, and bugs will have a branch created to fix
them. We will enforce this by running tests for pre- and post- merges of the develop branch,
and code reviews for all merge requests.

http://nvie.com/posts/a-successful-git-branching-model/

7

How do we use Git-flow?

Branches

Master and Develop branches

There will be two long running branches, master
and develop. These will be protected branches,
meaning only a few persons will have the right to
push changes directly to these branches. All
additions to these branches must be done via a
merge request (pull request). This allows code
review of everything that enters the framework
and ensure both master and develop branches stay
stable.

8

Feature branches

When developing new functionalities or features, or simply

refactoring/optimizing core code, you should create a feature

branch. Feature branches are branched from develop and named

after their ticket number or a brief description of the work being

done.

Rules for feature branch:

 Must branch off from develop

 Must merge back into develop

Naming convention:

Feature branches should always be prefixed with “feature-”, for example “feature-12345”

or “feature-something”.

Commands :

Switched to a new branch "myfeature":

$ git checkout -b myfeature develop

After adding new feature “myfeature” branch

Switch to branch develop:

$ git checkout develop

Merge “myfeature” branch to develop

$ git merge --no-ff myfeature

Delete branch “myfeature”

$ git branch -d myfeature

Push to develop branch

$ git push origin develop

9

Hotfix branches

When a serious bug is found or a fix is needed

immediately, you should create a hotfix branch.

Hotfix branches are spun directly from master,

tested as soon as possible and merged into the

master branch using a -squash merge. This gives us a

commit checkpoint of the fix being implemented.

Hotfix branches should also be merged directly into

develop.

Rules for Hotfix branch:

 Must branch off from master

 Must merge back into develop and master

Naming convention:

Hotfix branches should always be prefixed with “hotfix-”, for example “hotfix-*”

Command:

Switched to a new branch "hotfix-1.2.1"

$ git checkout -b hotfix-1.2.1 master

Files modified successfully, version bumped to 1.2.1.

$./bumpversion.sh 1.2.1

[hotfix-1.2.1 41e61bb] Bumped version number to 1.2.1

$ git commit -a -m "Bumped version number to 1.2.1"

1 files changed, 1 insertions(+), 1 deletions(-)

It is really important to bump the version number after branching off!

Then you should commit the fix

$ git commit -m "Fixed severe production problem"

[hotfix-1.2.1 abbe5d6] Fixed severe production problem

5 files changed, 32 insertions(+), 17 deletions

https://gist.github.com/pete-otaqui/4188238

10

At the end we merge back into master and develop.
Switched to branch master

$ git checkout master

Merge made by recursive. (Summary of changes).

$ git merge --no-ff hotfix-1.2.1

You should not forget to tag this version of code.

$ git tag -a 1.2.1

After the code is pushed on master you should push it again on develop.
Switched to branch develop.

$ git checkout develop

Merge made by recursive. (Summary of changes)

$ git merge --no-ff hotfix-1.2.1

There is an exception to the rules we write above. If there is a release branch, you must
merge on release branch instead of develop.

Rules for Hotfix branch when release branch currently exists:

 Must branch off from master

 Must merge back into release and master and develop

Delete branch hotfix-1.2.1 (was abbe5d6).

$ git branch -d hotfix-1.2.1

Release branches

Release branch is the branch that will be used for the new production release. Release

branches are created from develop branch

Rules for release branches:

 Must branch off from develop

 Must merge back into develop and master

Naming convention:

Release branches should always be prefixed with “release-*/”, for example “release-1.2”

Command:

Switch to a new branch "release-1.2"
$ git checkout -b release-1.2 develop

Files modified successfully, version bumped to 1.2.
$./bump-version.sh 1.2

11

After you should make a commit
$ git commit -a -m "Bumped version number to 1.2"

When the release branch is online, you should switch to release and merge it to master, then
tag the master branch. Afterwards you should merge back to develop as follow.

Switched to branch master
$ git checkout master

Merge made by recursive. (Summary of changes)
$ git merge --no-ff release-1.2

Tag this version of code
$ git tag -a 1.2

Switched to branch develop
$ git checkout develop

Merge made by recursive. (Summary of changes)
$ git merge --no-ff release-1.2

References

 https://gist.github.com/pete-otaqui/4188238

 http://nvie.com/posts/a-successful-git-branching-model/

 https://git-scm.com/doc

 https://git-scm.com/book/en/v2/Git-Tools-Submodules

https://gist.github.com/pete-otaqui/4188238
http://nvie.com/posts/a-successful-git-branching-model/
https://git-scm.com/doc

Funded by the Horizon 2020 programme of the European Union

Templates guidelines for user stories
description
Prepared by Vincent Roch, CREM

Reviewed by Sara Fritz, TUW

2017-05-02

 2

Table of contents

1 INTRODUCTION .. 3

2 DESCRIPTION OF THE TEMPLATES .. 4

2.1 US template .. 4

2.2 CM template ... 5

2.3 AD template .. 5

2.4 F template ... 6

2.4.1 FeaturesList tab.. 6

2.4.2 NewFeatureProposition tab .. 7

2.4.3 AD-request tab ... 7

2.4.4 Features description tabs ... 8

2.5 General templates organisation ... 10

3 ADDITIONAL INFORMATION.. 12

3.1 Working with the files/templates ... 12

3.2 Files organisation ... 12

3.2.1 Google Drive .. 12

3.2.2 Google Scripts .. 13

 3

1 Introduction
In order to describe user stories, templates have been created. They serve the following main
purposes:

1. Align every partner on:
a. what the end user wants to be able to do, get and see in the Hotmaps

toolbox
b. the effective capacity to satisfy these needs in terms of:

i. Data availability
ii. Calculation Modules

iii. IT development
c. a standardized way to describe it
d. the persons who are responsible for coherence

2. Generate, at the end, requirement specifications for IT developers

Templates have been created through the usage of online shared Google Sheets files and
Scripts (more information about files organisation are available in 3.2).

 4

2 Description of the templates
Four types of templates have been created:

1. US template (User Stories):
Dedicated to the end users of the Hotmaps tool to describe their needs.

2. CM template (Calculation Module)
Dedicated to energy engineers/specialist to describe the inputs/outputs of their
Calculation Modules.

3. AD template (Available Data)
Dedicated to energy engineers/specialist to describe Available Data, their source and
their access.

4. F template (Feature)
Dedicated to energy engineers/specialist to describe and coordinate how the end user
needs (Hotmaps toolbox functionalities) will be implemented from the Calculation
Modules and the Available Data.

Remarks: General scheme of the templates organisation is available on page 11.

2.1 US template

The US template is dedicated to end users to describe what are their needs in terms of tool’s
functionalities:

• There is one file including all the US templates (tab)

• There is one template (tab) per user story

• Each user story is divided into Features which are unitary functionalities

• For each Feature constituting the user story, the following information are requested:
o Unique user story ID (US.UserStoryID.UniqueNumber)
o Priority according to the pilot areas
o Corresponding Feature ID (defined in F template)

• From the Feature ID, the description (available in F template, see 2.4.1) of the
corresponding Feature is automatically completed (autocompletion will be referred
as “auto” in the rest of this document). It encompasses:

o Name of the Feature
o User action: how the end user wants to interact with the tool
o Indicators/values: what he/she wants to get in terms of indicators/values
o Visualization: in what form he/she wants to see them
o Mockups

• A summary table is available under the “US_overview” tab which lists all the user
stories (US tabs)

 5

2.2 CM template

CM templates are dedicated to energy engineers/specialist to describe the inputs/outputs
(I/O) of their Calculation Modules used in Features (see 2.4.4):

• There is one file per partner

• There is one template (tab) per Calculation Module coming from this partner with the
following information:

o Calculation Module name
o Calculation Module ID (CM.PartnerName.UniqueCMnumber)
o Date of last modification (auto)
o Responsible person, Institute, e-mail address
o Programming languages and libraries
o Calculation time estimation

• Each I/O is described with the following information:
o Unique I/O ID (In/Out.CM.PartnerName.UniqueCMnumber.UniqueNumber)
o Last modification date (auto)
o Data name
o Data attributes
o Attributes description
o Format

2.3 AD template

The AD template is dedicated to energy engineers/specialists to describe the Available Data
they have at their disposal as well as their source and access. This information is then used in
Features (see 2.4.4):

1. There is one file per partner with only one template (tab) with the following
information:

o Available Data ID (AD.PartnerName)
o Date of last modification (auto)
o Responsible person, Institute, e-mail address

2. For each Available Data, the following information is requested:

o Unique ID (AD.PartnerName.UniqueNumber)
o Last modification date (auto)
o Data name
o Data attributes
o Attributes description
o Data size
o Source of data
o Data source for Hotmaps tool (dropdown list):

▪ External DB
▪ Default EU28 (Data Warehouse)
▪ Internal DB (Not published)
▪ User Input ONLY

 6

o Person in charge
o Data availability (dropdown list):

▪ yes
▪ no
▪ not yet

2.4 F template

F template is dedicated to energy engineers/specialist to describe and coordinate how the
end user needs (Hotmaps tool’s functionalities) will be implemented from CM and AD. There
is one file including all the F templates (tab) described here below:

2.4.1 FeaturesList tab

The FeaturesList tab is dedicated to the “FeaturesList guardian” which is the responsible
person of the consortium of all the Features:

• This tab contains the list of all the Features used in US template

• For each Feature, all the following information is requested:
o Feature ID (F.UniqueNumber)
o Date of last modification (auto)
o Name of the Feature
o User action: how the end user wants to interact with the tool
o Indicators/values: what he/she wants to get in terms of indicators/values
o Visualization: in what form he/she wants to see them
o Responsible person
o Required other needed Features
o Mockup
o Development priority
o State (dropdown list):

▪ ready for description
▪ description in progress
▪ waiting for approval
▪ ready for development
▪ development in progress
▪ ready for testing
▪ test in progress
▪ Complete

Remarque:

• Only the “FeaturesList guardian” is allowed to modify this tab. Any new Feature
proposition by other partners must be submitted in the NewFeatureProposition tab
(see 2.4.2)

• A mockup refers to corresponding pictures available in “Mockups” folder (see 3.2.1)

 7

2.4.2 NewFeatureProposition tab

The NewFeatureProposition tab is used by any partner to suggest to the “FeaturesList
guardian” a new Feature that does not exist yet. Requested information is the following:

o Name of the person proposing a new Feature
o Date of last modification (auto)
o Name of the Feature
o User action: how the end user wants to interact with the tool
o Indicators/values: what he/she wants to get in terms of indicators/values
o Visualization: in what form he/she wants to see them
o Required other needed Features
o Mockup

Remarque:

Only the “FeaturesList guardian” is allowed to accept a new Feature coming from
NewFeatureProposition tab. Once accepted, the new Feature will be automatically integrated
in the FeatureList tab.

2.4.3 AD-request tab

The AD-request tab is used by any partner to request new data from another partner. If the
recipient accepts to provide this data, the data descriptions should be manually included in
the corresponding AD template file. Requested information is the following:

o Name of the requester
o Last modification date (auto)
o Data name
o Data attributes
o Attributes description
o Data source for Hotmaps tool (dropdown list):

▪ External DB,
▪ Default EU28 (Data Warehouse)
▪ Internal DB (Not published)
▪ User Input ONLY

o E-mail of the recipient
o Status (dropdown list):

▪ Waiting for response
▪ Accepted
▪ Rejected

Remarque:

The requester can automatically send an e-mail to the recipient using a dedicated “press
button” included in the tab.

 8

2.4.4 Features description tabs

Feature description template (tab) is used to describe how the Calculation Modules and the
Available Data are connected in order to implement the specific Feature described in
FeaturesList tab.

5 fields has to be completed for each Feature description template (tab):

• General information:
o Feature name (auto)
o Feature ID (F.UniqueNumber)
o Geographical level of Feature (dropdown list):

▪ Local
▪ Regional
▪ National
▪ Does not apply

o Date of last modification (auto)
o Responsible person, Institute (auto), e-mail address
o Check for modification in FeatureList (auto):

▪ ok
▪ be careful!

o Feature consistency check (dropdown list):

▪ ?
▪ ok
▪ not ok

o Approved by
o State (auto, see 2.4.1)

• All inputs needed for this Feature:
o Only corresponding ID coming from AD files or CM files (Output) has to be

filled
o Corresponding information will be automatically imported

• All Calculation Modules needed for this Feature:
o Only corresponding ID coming from CM files has to be filled
o Corresponding information will be automatically imported

• All outputs needed for this Feature:
o Only corresponding ID coming from AD files or CM files (Output) has to be

filled
o Corresponding information will be automatically imported

• A flow chart connecting all the Feature inputs, outputs and CM (referring to their
respective ID):

o To modify the flowchart, just double click on it

 9

o To see the modifications, the page has to be reloaded

Remarque:

• In the Feature inputs, an “end user input possibility” box has to be filled depending
on whether the end user can interact with the Feature. Three options are possible:

o “Required”:
This means that the Feature input can only come from the end user. This
input has to be described in an AD file with “Data source for Hotmaps tool”
box set to “User Input ONLY”

o “Not possible”:
This means that the input can only come from:

▪ Output of a CM
▪ AD file (excluding AD with “User Input ONLY” tag)

o “Optional”:

This means that the input can come either from the end user or default data
that are available in AD files (excluding AD with “User Input ONLY” tag)

• Feature input cannot come from a CM input (In.xxx) since this only specifies the input
format of a CM and does not say anything about the data availability of this input.
Therefore, Feature inputs can only come from AD files or CM outputs.

• In Inputs/Outputs/CM field, a “check for modification” in corresponding AD or CM
files automatically attests whether a conflict could arise following modifications in
these source files. If the date of the last modification in the AD or CM files
descriptions comes after the date of their usage in the Feature description, then a
“be careful!” arises as the coherence in the Feature description might not be valid
anymore.

• The “Check for modification in FeatureList” box is also used to check if source data in
“FeaturesList” tab have been modified after last updates of corresponding “F.x” tab.
If it is the case, a warning appears and the “F.x” responsible person will have to check
for coherence and update the date (by updating one of the row)

• The button “Update now” has to be pressed in order to get the most updated state of
the “check for modification” boxes.

• In the outputs field, a “Consistency check from Inputs to Output” box is available and
has to be filled (ok, no ok) in order to attest whether each Feature outputs can
effectively be obtained regarding the flowchart connections. This check box should
not be completed by the person who completed the Feature description.

• The same check box is available for the entire Feature description once all outputs
have been approved. Only the “FeaturesList guardian” is allowed to approve a
Feature.

 10

• To add a new row in Feature inputs/CM/outputs fields, the row/cell where a row
wants to be added has to be selected and the custom function “AddRow” in menu
bar has to be used, then “Add new row below selected cell”. Doing so, all the
formulas will be automatically pasted

2.5 General templates organisation

General organisation of the 4 templates are depicted in Figure 1. For a better understanding
of this scheme, templates description presented in chapter 2 can be useful for parallel
reading.

 11

Figure 1: Templates organisation scheme

 12

3 Additional information

3.1 Working with the files/templates

• Cells in light blue colour are updated automatically and must not be manually edited

• Sometimes, automatic updates can take several seconds to appear

• IDs and files nomenclature is very important as scripts are using them to connect all
files/tabs together. If things are not working properly, it is probably because of wrong
ID/files name format

• Any new tab must be created only by duplicating existing ones (NO range/cells copy-
paste)  “right click” on tab and “duplicate”

• Additional comments are available in certain cells (especially headers)

• When someone wants to work on the files, he/she must log in to his Google Account
so we can see who is working on what and also use chat functionalities offered by
Google Sheets when working in parallel

3.2 Files organisation

3.2.1 Google Drive

A folder is shared with every Hotmaps partner through Google Drive. The structure of this
folder is depicted in Figure 2.

Remarks:

• If a .gsheet file has to be added, especially in “CalculationModules” and
“AvailableData” folder, a special request has to be send to CREM since some other
files/Google Script will have to be modified in consequence

• List_URLs.gsheet contains the URLs of all the other .gsheet files that are need for
Google Scripts. No modification of this file is allowed without the consent of CREM.

 13

Figure 2: Shared folder hierarchy

3.2.2 Google Scripts

Google Scripts are used in the different .gsheet files for specific functionalities. No
modification of these script files is allowed without the consent of CREM.

Funded by the Horizon 2020 programme of the European Union

W e d n e s d a y , 0 1 F e b r u a r y 2 0 1 7

Taiga

Guidelines & Tutorial

Elaborated by CREM :

- Lesly Houndole, lesly.houndole@crem.ch
- Vincent Roch, vincent.roch@crem.ch

mailto:lesly.houndole@crem.ch
mailto:vincent.roch@crem.ch

2

Date: 01/02/2017

Table of Contents

Taiga guidelines ... 3

Taiga Tutorial ... 4

Task creation ..4

User story creation ..9

3

Taiga guidelines

 Each Sprint is created in Taiga 3 days before each SCRUM meeting at 11am

 Then, each developer will have 1 day to prepare Taiga (2 days before the SCRUM
Meeting, 11am,) by filling in his/her Tasks for the newly created Sprint

 During the SCRUM meeting, we will then discuss about the prioritization of the tasks
for the next Sprint

4

Taiga Tutorial

Task creation

1. Click the HotMaps backlog button

2. In this view, you can find sprints in progress and select the sprint for your tasks

5

3. A task can pertain to a user story or not. Click the “+” sign to create a new task

under the corresponding user story.
o If the task does not pertain to a specific user story, create your task under

“Unassigned tasks”
o If the user story does not exist yet, see next chapter “user story creation”

4. add the task name

6

5. Add the status

6. Assign it to someone

7

7. Add a tag to every Taiga task:

o the first part will be the Hotmaps task number (for example T4.1)
o followed by the action you want to do.

(T4.1/Setup the environment of hotmaps platform OR T4.1/Setup the user
interface)

A tag corresponds to a group of Taiga tasks

8. click the button below to create this new task

8

9. the task newly created has been added to the sprint board

10. You can change the task status using drag and drop

9

User story creation

1. Click the HotMaps backlog button

2. Click this button to create a user story

10

3. Create a new user story

4. The user story has been added to the board

11

5. Select the user story you want to add to the current sprint

6. Click this button to add the selected user story to the current sprint

12

7. In the sprint board the user story has been added and you can add tasks in it

Funded by the Horizon 2020 programme of the European Union

	Hotmaps_Deliverable-4-1_2017-06-29_fin
	GitFlow_Guidelines
	Templates_Guidelines
	Taiga_Guidelines

